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This paper presents theoretical results on the instability of a Blasius boundary
layer perturbed by Klebanoff modes (i.e. the low-frequency streaks known to be
induced by free-stream turbulence). Herein, the Klebanoff distortions are modelled
as the signature of a three-dimensional convected gust that may be either isolated
or periodic along the spanwise direction. Relatively weak Klebanoff fluctuations
can produce O(1) changes to the near-wall curvature of the base flow profile and,
hence, fundamentally alter the nature of its instability characteristics. The perturbed
flow is shown to support instabilities that are predominantly inviscid and have
significantly larger growth rates and characteristic frequencies than the Tollmien–
Schlichting (T–S) modes of an unperturbed Blasius flow. The spanwise mode shape
of instabilities in the perturbed flow is determined by the Schrödinger equation,
with a potential function that corresponds to the skin friction perturbation due
to the Klebanoff distortion. The growth rates of these modes are determined by
the near-wall torsion of the perturbed flow. The unsteadiness of the Klebanoff
distortion is shown to be a crucial element in determining the overall instability
characteristics.

A localized Klebanoff distortion supports both sinuous and varicose modes of
instability, but the sinuous modes are generally more unstable than the varicose
modes. Overall, the instability is intermittent in time and localized in space, being
confined to certain parts of the modulation cycle and within a specific window(s)
along the streamwise direction. In particular, the dominant sinuous modes appear
only during the phase in which a low-speed streak dominates the Klebanoff distortion.
A periodic distortion supports spatially quasi-periodic modes through a parametric
resonance mechanism.

The theoretically predicted instability modes share some key features with the
unstable disturbances measured in recent experiments, such as the relatively high
frequencies, growth rates that depend on the level of free-stream turbulence, small
rate of spreading in the lateral direction and, above all, their intermittency in space
and time. Non-equilibrium critical-layer theory is used to track a localized sinuous
mode through two distinct stages of nonlinear evolution, which eventually terminates
in a singularity that indicates the onset of fully nonlinear yet primarily inviscid
disturbance dynamics.
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1. Introduction
It is known that low-frequency components of three-dimensional vortical

disturbances in the free stream can be entrained into the boundary layer due to
the non-parallel flow effect, producing significant distortion in the form of alternate
thickening and thinning of the layer along the spanwise direction. This observation
goes back to Dryden (1936) and Taylor (1939) who suggested that the entrained vortex
motion, rather than the Tollmien–Schlichting (T–S) instability, was the leading cause
of transition to turbulence. The dispute continued until the experiments of Schubauer
& Skramstad (1947), which fully validated the work of Tollmien (1929) and Schlichting
(1933) by suppressing the effects of free-stream turbulence. Since then, most studies
have focused on transition in low-amplitude disturbance environments, for which
the T–S modes provide the starting point for understanding the overall transition
process.

Motivated by its relevance to turbomachinery, however, there has also been a
considerable amount of work on transition at moderate to high levels of free-stream
turbulence. This has renewed the interest in the findings of Dryden (1936) and
Taylor (1939). Recent experimental studies (see e.g. Kendall 1985; Westin et al. 1994;
Matsubara & Alfredsson 2001; and references therein) show that the boundary layer
filters out the high-frequency components of free-stream turbulence, while amplifying
the low-frequency parts of the signature. The distortion within the boundary layer is
dominated by the streamwise velocity fluctuations, which are manifested in the form
of longitudinal vortices or streaks. In recognition of the contribution by Klebanoff
(1971), Kendall (1985) referred to these low-frequency streaks as the Klebanoff
modes, and that name has been widely adopted in the literature since then. Since the
Klebanoff modes do not mathematically correspond to eigensolutions of a linearized
homogeneous boundary-value problem, in the present paper we shall refer to them as
Klebanoff distortions or fluctuations in order to distinguish them from the instability
modes that we shall discuss.

Given that Klebanoff fluctuations are of low frequency, one might be inclined to
believe that an appropriate steady perturbation might capture the essential physics
involved. Indeed, a steady perturbation in the oncoming flow can induce a boundary-
layer distortion that is similar to the Klebanoff motions (Bradshaw 1965). Motivated
by Bradshaw’s observations, Crow (1966) calculated the resulting distortion using
linearized boundary-layer equations and was able to describe the alternate thickening
and thinning of the boundary layer near the leading edge as noted in the earlier
experiments by Taylor (1939) and Bradshaw (1965). The boundary-layer response
to small-amplitude unsteady vortical disturbances was calculated by Gulyaev et al.
(1989) and Choudhari (1996) using the unsteady form of the linearized boundary-layer
equations. They showed that the low-frequency disturbances induce a large streamwise
velocity fluctuation in the boundary-layer region, which exhibits a significant growth
in the downstream direction.

The boundary-layer approximation is valid sufficiently close to the leading edge,
where the thickness of the boundary layer is smaller than the spanwise length scale
of the perturbation. Due to a continued growth of the boundary-layer thickness (as
well as of the perturbation amplitude), however, crossflow ellipticity (and disturbance
nonlinearity) must become significant sufficiently far downstream of this region. The
subsequent evolution of the boundary-layer signature of free-stream disturbances is
described by the boundary-region equations (Goldstein & Leib 1993; Wundrow &
Goldstein 2001; Leib, Wundrow & Goldstein 1999). Wundrow & Goldstein (2001)
considered the generic case for purely steady perturbations, such that the nonlinearity
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and crossflow ellipticity come into play simultaneously. In this case, the distorted flow
differs from the original Blasius profile by O(1) and, moreover, becomes inflectional
in the main part of the boundary layer. It can therefore support a new and stronger
class of inviscid Rayleigh instabilities, which may lead to the onset of turbulence via
an alternative route to the T–S modes, namely bypass transition. Leib et al. (1999)
used the linearized form of the unsteady boundary-region equations to describe the
low-frequency Klebanoff fluctuation further downstream of the leading edge. By
representing the broad-band free-stream turbulence as a superposition of Fourier
modes, Leib et al. (1999) calculated the streamwise evolution of the root-mean-square
of the fluctuations within the boundary layer, which compared favourably with the
relevant experimental data. The boundary-layer response was found to be rather
sensitive to the spectrum of the free-stream disturbance. Their findings underscore
the importance of fully characterizing the free-stream environment; this has not been
adequately done in most experiments.

As indicated above, experiments have provided fairly complete quantitative data
about the characteristics of Klebanoff fluctuations themselves, and considerable
theoretical progress has also been made in terms of characterizing/predicting them.
However, the transition process in the presence of these fluctuations remains to be
fully understood. In particular, it is not clear if the T–S waves continue to play an
important part in transition or if it is initiated by some other instabilities, e.g. the
instability of the streaks.

A number of direct laboratory investigations of the transition process in the
presence of Klebanoff fluctuations have been made. At moderate levels of free-stream
turbulence, Arnal & Juillen (1978) and Kendall (1990) have observed the intermittent
appearance of wavepackets inside the boundary layer. While the exact origin of the
wavepackets was unclear, they apparently resembled T–S waves. A series of landmark
experiments conducted by Kendall has revealed some unusual characteristics of these
wavepackets. First, they appear only when the free-stream turbulence level exceeds a
threshold of about 0.1%. Second, the growth rates of these packets are considerably
larger than those of the T–S waves, being also dependent on the turbulence level
(Kendall 1991, 1998). Third, the frequencies of these waves are also higher than those
of T–S instabilities. Finally, these packets are relatively confined in the spanwise
direction, spreading rather slowly as they propagate downstream. There has been
no physical explanation for the above features thus far, except for the conjecture
by Goldstein & Wundrow (1998), that the intermittency of the wavepackets and the
nonlinear dependence of their amplitude on the turbulence level could be attributed
to random receptivity via non-parallelism of the mean flow (due to either a rapid
boundary-layer growth near the leading edge and/or geometric perturbations in the
region downstream). An alternative hypothesis (which does not preclude the scenario
proposed by Goldstein & Wundrow) is suggested in the present study, which attempts
to shed further light on some of the unusual characteristics of the high-frequency
wavepackets noted above.

Rather than studying naturally occurring wavepackets, Watmuff (1997) used a
harmonic point source to generate spanwise localized wavetrains in a controlled
fashion. Even a weak Klebanoff perturbation was found to severely distort the wave-
train, such that a comparison with calculations that did not account for the Klebanoff
distortions was almost meaningless. On the other hand, however, the artificially
excited wavetrain did not exhibit the excess growth as observed by Kendall for the
naturally occurring wavepackets. Watmuff attributed this difference to the fact that
the Klebanoff fluctuations were relatively weak in his experiments.
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Boiko et al. (1994) studied the development of an artificially excited planar T–S
wave in a boundary layer subjected to 1.5% free-stream turbulence. As expected,
the planar wave front was deformed by the Klebanoff fluctuations; however, the
growth rate of the T–S wave was reduced (relative to that in an unperturbed Blasius
flow), which suggests that the Klebanoff fluctuation now had a stabilizing effect on
the unstable modes at higher frequencies. The ultimate breakdown of the laminar
boundary layer was, however, still associated with the nonlinear development of the
T–S wave. These observations present a rather paradoxical situation, since it is well
known that higher-intensity free-stream turbulence generally hastens the laminar–
turbulent transition. A similar problem was recently investigated by Watmuff (2000),
albeit in a different experimental setting. He also observed the distortion of the
wavefront, but found that the growth rate was hardly affected by the Klebanoff
distortions. Nevertheless, transition in his experiments did occur slightly earlier than
when the Klebanoff fluctuation was absent. Finally, Bakchinov et al. (1998) have
investigated the interaction between a planar T–S wave of relatively high frequency
and a localized disturbance introduced in the free-stream region. When generated
separately, each of these disturbances was found to decay. But when introduced
simultaneously, Bakchinov et al. observed enhanced amplification of broad-band low-
frequency oblique waves, presumably due to a nonlinear interaction between the
two artificially introduced disturbances. The nature of this interaction has not been
explained as yet.

In addition to investigating the role of conventional T–S waves during transition
under moderate levels of free-stream turbulence, it is also important to examine
alternative instability mechanisms. Streak instability, in particular, has attracted
much attention in recent years. Matsubara, Bakchinov & Alfredsson (2000) reported
that streaks or Klebanoff modes are unstable, which can lead to a meandering
and oscillation of the streaks and an eventual breakdown into turbulent spots.
Unfortunately, the random nature of the streaks implies that a detailed quantitative
study of their stability would be rather difficult. Therefore, some researchers have
chosen to generate steady spanwise-dependent flow in a controlled manner, typically
through surface suction/blowing or surface roughness. These artificially created
distortions are akin to Klebanoff modes in some respects and, hence, these kinds
of studies may shed useful light on the streak instability. For a survey of the main
findings from these studies, the reader is referred to Part 1 of this paper (Wu & Luo
2003).

In an effort to understand streak breakdown, Andersson et al. (2001) modelled
the streak structure as a steady, spanwise-periodic distortion to a Blasius boundary
layer. An inviscid stability analysis based on Floquet theory suggested that the
streaks become unstable only when the amplitude of the associated streamwise
velocity perturbation exceeds approximately 26% of the free-stream velocity. This
estimate is perhaps too high to be representative of typical Klebanoff distortions
in natural disturbance environments. Based on the present work, it appears that a
partial explanation for this discrepancy may well be related to the unsteadiness of the
Klebanoff distortion, which (in spite of the low frequencies of the distortion) is found
to exert a significant effect on the high-frequency secondary instabilities (see § 2.2). For
distortion induced by a steady free-stream disturbance, Goldstein & Wundrow (1998)
and Wundrow & Goldstein (2001) found that nonlinear effects cause the streamwise
velocity to become large in localized regions of flow even when the root-mean-square
(RMS) value of the distortion is relatively small, suggesting that a localized instability
may occur first.
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A direct numerical simulation of the transition initiated by high levels of free-stream
turbulence was first performed by Rai & Moin (1993). Their simulations involved
three sequential streamwise domains in order to cope with the different resolution
requirements associated with the three dominant physical processes relevant to this
problem, namely (a) interaction of free-stream turbulence with the leading edge,
(b) subsequent development of the disturbance within the boundary layer plus the
early transition stage, and (c) the late stages of transition plus the fully turbulent
state. This treatment allowed a realistic description of the practical situation while
avoiding the excessive grid count that would otherwise have been required.

Jacobs & Durbin (2001) carried out a direct numerical simulation of the bypass
transition caused by strong free-stream disturbances, which were represented by
a superposition of modes from the continuous spectrum of the Orr–Sommerfeld
equation. Unlike Rai & Moin (1993), the perturbation was imposed at some large
distance downstream from the leading edge. Due to the reduced size of the simulation
domain and the increased computational power available, Jacobs & Durbin were able
to perform the simulation on a finer mesh than was available to Rai & Moin (1993).
It was found that the boundary-layer response was indeed dominated by streamwise
streaks. However, these streaks appeared to be fairly stable and it was only after they
had lifted up to the outer part of the boundary layer to form a ‘backward jet’ that
the breakdown to turbulent spots occurred. Their simulation also revealed that the
breakdown was local (as conjectured theoretically by Goldstein & Wundrow 1998
and Wundrow & Goldstein 2001), being determined by a combination of the strength
and the length scale of the local distortion; the collective instability of the Floquet
type was not observed.

In this paper, we investigate the instability of a Blasius boundary layer perturbed by
Klebanoff distortions. Our main interest will be in small-amplitude distortions, partly
because they allow the phenomenon to be studied on an analytical basis but also
because the amplitude levels measured in most experiments do not exceed 10–15%
of the free-stream velocity. Of course, a low level of disturbance in terms of RMS
does not necessarily guarantee its linearity, as indicated by the work of Goldstein &
Wundrow (1998) for the steady distortion mentioned earlier. However, we will show
that certain unsteady distortions can alter the flow instability before reaching the
nonlinear stage. One significant assumption underlying the present work involves the
spanwise length scale of the Klebanoff distortion, which is assumed to be larger than
the boundary-layer thickness. As in Part 1, we address two main issues: (a) how the
Tollmien–Schlichting instability, which operates in the absence of any distortion, is
modified by a weak Klebanoff fluctuation, and (b) whether a weak distortion can
induce an inviscid instability which is absent from the unperturbed boundary layer.
An asymptotic approach based on the high-Reynolds-number assumption is employed
to describe both the Klebanoff fluctuation and the instability of the perturbed flow
in a systematic and consistent manner.

In § 2, we formulate the problem in an asymptotic framework. A three-dimensional
vortical disturbance is prescribed in the oncoming flow. The spanwise distribution of
the perturbation is allowed to be either localized or periodic. The relevant inviscid
solution, valid outside of the boundary layer, is obtained first. For the scalings adopted
in this paper, the boundary-layer signature of this inviscid perturbation, i.e. the
Klebanoff distortion, is governed by the linearized unsteady boundary-layer equations.
In § 2.2, we present the details of the scaling arguments which determine both the
characteristic wavelength of the instability modes as well as the required magnitude
of the Klebanoff distortion. Depending on the relative values of the streamwise and
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spanwise length scale of the instability, two distinct types of instability modes may be
considered. The first class of modes corresponds to the fully three-dimensional (i.e.
oblique) modes that were identified by Goldstein & Wundrow (1995) in the context of
purely stationary distortions to a Blasius flow. The other set of modes is primarily two-
dimensional, i.e. it has significantly shorter wavelengths in the streamwise direction
than the spanwise length scale involved. The latter scale is, of course, the same as that
of the distortion for both classes of modes. The Goldstein–Wundrow (G–W) modes
are based on a parametric resonance mechanism, and therefore exist only for global
distortions that are periodic in the spanwise direction.

The linear instability of the modified flow is analysed in § 3. Due to our interest in
high-frequency wavepackets that are localized along the spanwise direction, the case of
localized distortions (and, therefore, the second class of instabilities mentioned above)
is emphasized in this paper. We show that the spanwise mode shape of the instability
is governed by a Schrödinger equation, which describes the interaction between the
instability mode and the Klebanoff distortion within the bulk of the boundary layer.
The potential function in this Schrödinger equation is proportional to the local wall-
shear perturbation induced by the the Klebanoff distortion. The growth rate of the
instability mode is determined at a higher order in the asymptotic analysis, by the
curvature of the distorted flow at the critical level of the instability mode. For a
localized distortion, solutions representing sinuous and varicose modes are presented,
and their relative importance is assessed. Further calculations are carried out for a
spanwise localized Klebanoff fluctuation to demonstrate the intermittent and local
nature of the instability.

The nonlinear development of a sinuous instability mode through a sequence
of distinct asymptotic sub-regimes is considered in § 4. In § 5, we discuss how
the preceding analysis can be applied to the case of spanwise-periodic Klebanoff
distortions. The main findings of this work and their physical implications are
summarized in § 6.

2. Formulation
Consider the two-dimensional incompressible boundary layer due to a uniform

flow with velocity U∞ past a semi-infinite flat plate. Superimposed on the incoming
stream is a small-amplitude three-dimensional vortical disturbance (i.e. a ‘gust’) that is
assumed to be advected at the free-stream speed. For simplicity, we also assume that
the free-stream disturbance is harmonic in time, with a frequency of k1U∞/Λ where k1

denotes the non-dimensional frequency parameter and Λ represents the dimensional
length scale of the gust in the spanwise direction.

The flow is described in the Cartesian coordinate system (x, y, Z), which has its
origin at the plate leading edge. Here, x, y and Z denote the streamwise, normal,
and spanwise coordinates non-dimensionalized with respect to Λ. The time variable
t is normalized by Λ/U∞ and the velocity components (u, v, w) and pressure p are
normalized by U∞ and ρU 2

∞, respectively, where ρ denotes the fluid density. The
Reynolds number

RΛ ≡ U∞Λ/ν

is assumed to be a large parameter throughout this analysis (i.e. RΛ � 1).
The streamwise and normal velocity components of the Blasius flow are given by

(UB, VB) =
{
F ′(η), (2xRΛ)−1/2(ηF ′ − F )

}
,
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where F satisfies the Blasius equation

F ′′′ + FF ′′ = 0, F (0) = F ′(0) = 0, F ′(∞) → 1, with η = R
1/2
Λ

y√
2x

. (2.1)

2.1. Flow distortion induced by Klebanoff modes

The boundary-layer response to a three-dimensional convected gust was analysed by
Gulyaev et al. (1989), Choudhari (1996) and Leib et al. (1999). Similarly to their
work, the velocity field of the disturbance superimposed on the oncoming flow has
the form

u∞ = εD(û∞B ′(Z), v̂∞B ′(Z), ŵ∞B(Z)) eik1(x−t)+ik2y, (2.2)

where εD represents the gust amplitude (εD � 1), and k1 and k2 denote the streamwise
and transverse wavenumbers, respectively. As shown in the above studies, the
amplification of the gust signature within the boundary layer is directly proportional
to the ratio of the spanwise and streamwise wavenumbers, respectively. Accordingly,
we assume that k1 � 1, k2 = O(1). For the most part, our interest will be confined to
the range of streamwise locations that corresponds to

x � RΛ, (2.3)

so that the spanwise length scale of the disturbance is significantly greater than the
local thickness of the boundary layer, and

x � ε−1
D , (2.4)

which allows the effects of disturbance nonlinearity to be suppressed as the gust
is advected with the free stream (Leib et al. 1999). We observe that the measured
properties of Klebanoff modes are closely tied to the wavenumber–frequency spectrum
of turbulence in the upstream flow and, therefore, will vary from facility to facility as
well as between wind tunnels and the flight environment. Therefore, the accuracy of
the ‘long spanwise-wavelength’ assumption will accordingly vary from one disturbance
environment to another. For example, as pointed out by Leib et al. (1999), the mea-
sured length scale of Klebanoff fluctuations was nearly five times larger than the
boundary-layer thickness in the original experiments of Klebanoff (1971); however,
the scale was closer to the boundary-layer thickness in the experiments by Kendall
(1985) and Westin et al. (1994). In the present context, of course, the assumptions (2.3)
and (2.4) have been motivated primarily by the resulting simplicity of the analysis.

Note that we have allowed for a general spanwise dependence of the gust via the
arbitrary function B(Z). This generalization was prompted by the fact that, in practice,
the free-stream disturbances are stochastic in nature, having a finite correlation
length along the spanwise direction. Any given realization may, therefore, resemble
a finite-extent perturbation rather than a spanwise-periodic one. In a broad sense,
consideration of an isolated distortion is also motivated by the finding of Goldstein
& Wundrow (1998) and Wundrow & Goldstein (2001) that a periodic distortion,
under nonlinear effects, tends to concentrate in localized regions along the spanwise
direction. A similarly general dependence of the free-stream disturbance, either on x

(or, equivalently, on t due to the convective phase) and/or on y, may also be allowed
for in this framework via a Fourier superposition. However, for simplicity, we will
proceed on the basis of the harmonic assumption (2.2) and, later, indicate how the
final results may be generalized to an arbitrary form of convected free-stream vorticity.
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The inviscid solution (valid outside of the main boundary layer) for k1x = O(1)
can be written as (Leib et al. 1999)

uD = u∞ + εD∇φ, (2.5)

where φ denotes the velocity potential and, to the required order, it satisfies the
Laplace equation

∇2φ = 0. (2.6)

The boundary conditions are given by

∇φ → 0 as y → ∞,
(2.7)

φ(x, 0) = 0 (x < 0), φy(x, 0) = −v̂∞B ′(Z) eik1(x−t) (x > 0).

}

The full solution to the boundary-value problem (2.6)–(2.7) can be found by the
standard Wiener–Hopf technique. However, for the purpose of stability analysis, we
confine ourselves to the region x � 1, such that k1x = O(1) while (2.3) is still satisfied.
The inviscid solution under these conditions can be obtained by neglecting the x-
derivative term in (2.6) and solving the resultant two-dimensional Laplace equation in
the half-space y > 0. This yields the following solution for the slip velocity components
in the streamwise and spanwise directions:

us ≈ û∞, ws ≈ v̂∞
∂

∂Z

∫ ∞

−∞

B(ζ )

ζ − Z
dζ. (2.8)

The signature of the above inviscid solution within the boundary layer corresponds
to a small perturbation to the Blasius flow and, to the leading order of approximation,
is given by

uD = εD

[
Ũ ,

(
2x̄k1

RΛ

)1/2

Ṽ , W̃

]
e−īt + c.c. + . . . , (2.9)

where we have put

x̄ = k1x, t̄ = k1t.

Irrespective of the value of the transverse wavenumber k2 or the spanwise distribution
B(Z), the solution for the boundary-layer distortion can be split into a sum of two
parts:

(Ũ , Ṽ , W̃ ) =

[
−w′

s(Z)

k1

Ū , −w′
s(Z)

k1

V̄ , ws(Z)W̄

]
+ us[Ū1, V̄1, 0] + . . . . (2.10)

Since k1 � 1 for the low-frequency Klebanoff fluctuation, the second part is
asymptotically smaller than the first and, therefore, does not influence the stability
of the distorted flow to the leading order. Accordingly, only the first part of the
Klebanoff distortion in (2.10) needs to be considered in the present work. Equation
(2.10) also shows that the streamwise velocity perturbation within the boundary layer
is much larger in amplitude than the free-stream disturbance. The functions (Ū , V̄ , W̄ )
are governed by the linearized unsteady boundary-layer equations (Leib et al. 1999)

∂Ū

∂x̄
− η

2x̄

∂Ū

∂η
+

∂V̄

∂η
+ W̄ = 0, (2.11)

−iŪ + F ′ ∂Ū

∂x̄
− F

2x̄

∂Ū

∂η
− ηF ′′

2x̄
Ū + F ′′V̄ =

1

2x̄

∂2Ū

∂η2
, (2.12)

−iW̄ + F ′ ∂W̄

∂x̄
− F

2x̄

∂W̄

∂η
=

1

2x̄

∂2W̄

∂η2
, (2.13)
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Figure 1. Variation of U ′′′(0, x̄) (—, real part; - - - -, imaginary part) and |U ′(0, x̄)| (− · − · −)
with x̄.

where η is defined by (2.1). The appropriate boundary conditions are

Ū = V̄ = W̄ = 0 at η = 0,

Ū → 0, W̄ → eix̄ as η → ∞.

}
(2.14)

In the upstream limit (x̄ → 0), the flow becomes quasi-steady and its solution matches
that obtained by Crow (1966),

Ū → 1
2
x̄ηF ′′, V̄ → 1

4
(η2F ′′ − 3ηF ′ − F ), W̄ → F ′. (2.15)

On the other hand, as x̄ → ∞, the perturbations move away from the wall and
towards the edge of the mean boundary layer (Choudhari 1996; Leib et al. 1999).
Because the maximum distortion to the boundary-layer flow is confined to the
region x̄ = O(1), this is the region of interest from the standpoint of investigating
potentially radical changes to the linear instability of the flow.

We will show in § 3 that the complete profiles of the Klebanoff distortion are not
required to determine the leading-order instability characteristics of the perturbed
flow; instead, the characteristics are completely determined by local values of the
slope Ū ′(0, x̄) and the torsion Ū ′′′(0, x̄) of the streamwise velocity fluctuation near
the surface. In fact, the wall torsion itself is related to the wall-shear perturbation
by the simple relation

Ū ′′′(0, x̄) = −2ix̄Ū ′(0, x̄), (2.16)

which follows from a differentiation of (2.12) with respect to η and setting η = 0.
The importance of the near-wall features of the gust signature is easily understood
by recalling that the viscous instability modes of the unperturbed Blasius flow are
controlled by the mean value of the skin friction parameter and, as noted by Goldstein
& Wundrow (1998), any inflectional behaviour of the perturbed base flow is also
confined to a narrow vicinity of the surface (since the amplitude of the Klebanoff
distortion is assumed to be small in comparison with the free-stream speed). The
streamwise variation in the amplitudes of the wall-shear and wall-torsion fluctuations
due to the gust is displayed in figure 1, which underscores the previously made
observation that the region x̄ = O(1) accounts for the range of locations (or,
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equivalently, the range of frequencies at a given streamwise location) wherein the
boundary-layer flow is distorted the most.

2.2. Scaling arguments

As discussed in § 2.1, the Klebanoff distortion in the boundary layer is concentrated in
the streamwise region where x̄ = O(1), i.e. at a distance of l∗ = O(k−1

1 Λ) downstream
from the leading edge. Accordingly, we introduce the Reynolds number based on l∗:

R =
U∞l∗

ν
= RΛ

(
l∗

Λ

)
. (2.17)

The base flow which has been distorted by this low-frequency fluctuation is
inhomogeneous in both space and time. Although no comprehensive theory exists
to describe the complete instability characteristics of such flows, we will exploit the
weakness of the inhomogeneity to identify some of the interesting features of this
instability.

Similarly to the case of purely steady distortions due to streamwise vortices
(Goldstein & Wundrow 1995; Part 1), the spanwise velocity perturbation induced by
the Klebanoff fluctuation is small compared with the corresponding perturbation in
the streamwise velocity. Therefore, to the leading order of approximation, the modified
base flow corresponds to a unidirectional shear flow, with the primary shear being
along the wall-normal direction and a secondary shear along the spanwise coordinate.
Such flows can support viscous–inviscid interactive instabilities with O(R1/4U∞/l∗)
frequencies, which are governed by the triple-deck structure (Smith 1979). However, it
is easily verified that the amplitude of the Klebanoff distortion must be comparable
to the free-stream speed in order to produce an O(1) change in the growth rates of
these instability modes. In contrast, even relatively weak Klebanoff distortions can
have a significant effect on the instability modes at higher frequencies (compared
with those of the viscous–inviscid interactive modes), whose growth characteristics
are controlled by the curvature of the perturbed flow in the vicinity of the wall. An
important observation in this context is that, for the low-frequency (but unsteady)
distortion,

Ū ′′ ∼ η as η → 0. (2.18)

Therefore, in a thin region near the surface, the Klebanoff fluctuation at suitable
values of k1 and εD may alter the curvature of the unperturbed Blasius profile by
O(1), while the perturbation to the streamwise velocity itself remains small compared
with the free-stream speed. This, in turn, can lead to fundamental changes in the
nature of instability in the distorted flow, by allowing inviscid instability modes to
exist in addition to the primarily viscous T–S modes supported by the Blasius flow.
The above scenario is rather different from the case where the distortion is induced
by a completely steady free-stream disturbance†, for which Ū ′′ ∼ η2 as η → 0 and,
therefore, no new instability can emerge until the distortion amplitude becomes O(1).
Thus, there exists a crucial difference between steady and unsteady distortions, even
if the frequency of the distortion is significantly smaller than that of the instability
modes.

The curvature of the distorted streamwise profile becomes comparable with that
of the Blasius profile itself within a thin region near the wall. The O(σ̂ ) thickness

† Here the distortion is caused by perturbations outside the boundary layer. The steady distortion
considered in Part 1 is generated by perturbations within the boundary layer, and thus has a rather
different vertical structure.
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of this region (relative to the O(R−1/2l∗) thickness of the mean boundary layer) is
determined by the balance

εDσ̂ (l∗/Λ) ∼ σ̂ 2. (2.19)

Given the possible occurrence of an inflection point at O(σ̂ ) distances from the
surface, it follows from the classical Rayleigh scalings that the most unstable inviscid
modes will have O(σ̂U∞) phase speeds and O(σ̂ −1R−1/2l∗) wavelengths along the
streamwise direction. Furthermore, consistent with our focus on local distortions, we
seek instability modes with streamwise wavelengths shorter than the spanwise length
scale of Λ.

The spanwise mode shape of the above instabilities (and their growth rate) is
determined by the spanwise distribution of the Klebanoff distortion at the location of
interest, similar to the instability modes considered in Part 1 (which involved purely
stationary distortions). A crucial difference from Part 1 is that the curvature of the
Klebanoff distortion is smaller by a factor σ̂ in the wall layer than in the main part
of the boundary layer. Unlike in Part 1, therefore, the instability characteristics of
the perturbed flow are not solely controlled by the distortion in the wall region. The
O(σ̂ ) distortion in the bulk of the boundary layer also affects the instability wave,
by inducing a comparable correction to the wavenumber and the phase speed. The
distortion is a function of Z, and so must be the spanwise shape of the instability
mode; however, the correction to the wavenumber must be Z-independent. Both
the mode shape and the wavenumber correction must be determined through an
appropriate eigenvalue problem. A careful consideration of the balances in the main
deck shows that for a proper eigenvalue problem to be formulated at O(σ̂ ), we require

σ̂ 3/2 ∼ R−1/2l∗

Λ
. (2.20)

The exact reason for choosing the above scaling will become clear in the next section.
It is easy to deduce from (2.17), (2.19) and (2.20) that the width of the wall layer σ̂ is

related to the Reynolds number RΛ and the frequency k1 of the Klebanoff fluctuation
via

σ̂ ∼ (RΛ/k1)
−1/3, (2.21)

and that the required amplitude of the free-stream disturbance is

εD ∼ k1σ̂ ∼ R
−1/3
Λ k

2/3
1 . (2.22)

We thus set

εD = R
−1/3
Λ k

2/3
1 B0,

so that B0 = O(1) denotes the scaled amplitude of the distortion.
It can be shown that for the Klebanoff distortion to induce an O(1) (or larger)

change in the viscous growth rate of the instability modes of interest (relative to
that in an unperturbed Blasius flow), we must have σ̂ � R−1/20. On the other hand,
recall that the foregoing analysis was based on the assumption that σ̂ � 1. These
considerations impose the following restriction on the ratio k1 of the spanwise and
streamwise length scales of the Klebanoff distortion:

R−1
Λ � k1 � R

−17/23
Λ , (2.23)
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or, equivalently, on the range of streamwise locations where the analysis in § § 3–4 is
formally valid:

R
17/23
Λ � l∗

Λ
� RΛ. (2.24)

Correspondingly, the amplitude of the free-stream disturbance can be anywhere within
the range

R−1
Λ � εD � R

−19/23
Λ . (2.25)

While the Klebanoff distortion modulates the Blasius flow on the slow variables x̄

and t̄ = k1t , the instability wave oscillates on the much faster variables σ̂R1/2x̄ and
σ̂ 2R1/2 t̄ . We thus introduce

ζ = σ̂R1/2(αx̄ − σ̂ωt̄ ), (2.26)

to describe the oscillation of the carrier wave, where the scaled wavenumber and
frequency α and ω are both O(1). In a flow that is slowly varying in the streamwise
direction, it is natural to consider spatial instability. Since the present flow modulates
in both time and space, one may equally argue for a temporal instability. It turns
out that the spatial (temporal) growth rate −αi (ωi) of the instability mode is smaller
than the wavenumber (frequency) so that −αi and ωi are linked by Gaster’s (1962)
relation, −αi = ωi/cg , where the group velocity cg is twice the phase speed c. In the
following, a spatial instability problem will be formulated, i.e. ω is taken to be real
and α expands as

α = α0 + σ̂ α1 + σ̂ 2α2 + σ̂ 3α3 + . . . .

It turns out that α0, α1 and α2 are purely real quantities, and α3 is the first term to
have a non-zero imaginary part. In other words, the growth rate of these instability
modes is O(σ̂ 4), which exceeds the viscous growth rate of the lower-branch T–S modes
when σ̂ � R−1/32. To facilitate the subsequent study of the nonlinear development of
the above modes, we choose to absorb both amplitude and phase variations at the
level of α3 into an amplitude function that varies on the scale

X = σ̂ 4R1/2x̄ = O(1). (2.27)

Since X is also much faster than x̄ according to (2.21) and (2.23), the space and time
modulation of the distortion can be treated as parametric when the stability of the
perturbed flow is studied, that is, the disparity between the length and time scales of the
instability modes and those of the background flow allows us to seek ‘local instability
modes’ by freezing the instantaneous profile of the latter at a particular time and
streamwise location. The term ‘eigenfunction’ is to be understood in this local sense.
The time-scale disparity implies that the global periodicity of the background flow
is of little relevance. Nevertheless, a possible connection between the instantaneous
instability and the global instability of Floquet type will be discussed in § 6.

3. Linear instability analysis
As in Part 1, the linear instability problem is governed by a five-zoned asymptotic

structure. In the present problem, however, the Klebanoff distortion in the main deck
plays a crucial role in determining the spanwise mode shape. In contrast, the relatively
strong distortion in the wall region alone was found to control both the mode shape
and the growth rate for the case analysed in Part 1.
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The appropriate transverse variable in the main part of the boundary layer
corresponds to

ŷ =
ΛR1/2

l∗ y = (2x̄)1/2η.

The total streamwise velocity of the base flow is then given by

UB + σ̂UD(ŷ, Z; x̄, t̄), (3.1)

where UD denotes the normalized distortion profile. For the most part, we shall
focus on the case of a time-harmonic free-stream disturbance, for which UD =
−w′

s(Z)(Ū e−īt + c.c.). However, the linear instability analysis presented in this section
is also applicable to broadband free-stream disturbances. The eigensolutions in the
main deck take the usual form

u = ε
{
A(X)Φ(Z)û0(ŷ) + σ̂ û1 + σ̂ 2û2 + σ̂ 3û3 + . . .

}
eiζ +c.c., (3.2)

v = εσ̂
{
A(X)Φ(Z)v̂0(ŷ) + σ̂ v̄1 + σ̂ 2v̂2 + σ̂ 3v̂3 + . . .

}
eiζ + c.c., (3.3)

w = εσ̂ 3/2
{
A(X)Φ ′(Z)ŵ0(ŷ) + σ̂ ŵ1 + σ̂ 2ŵ2 + σ̂ 3ŵ3 + . . .

}
eiζ + c.c., (3.4)

p = εσ̂
{
A(X)Φ(Z)p̂0(ŷ) + σ̂ p̂1 + σ̂ 2p̂2 + σ̂ 3p̂3 + . . .

}
eiζ + c.c., (3.5)

where ε represents the amplitude of the streamwise velocity fluctuation associated
with the eigenmodes, and the (normalized) amplitude function A(X) illustrates the
growth (or decay) of the eigenmode in the streamwise direction. Here, the terms
of O(σ̂ 3 log σ̂ ) in the expansion have not been written out explicitly since they are
‘passive’ in the sense that matching at this order is automatically guaranteed.

The leading-order terms in the expansions (3.2)–(3.5) have the familiar solution

û0 = U ′
B, v̂0 = −iα0UB, p̂0 = P0, ŵ0 = −(iα0)

−1P0U
−1
B , (3.6)

where P0 is a constant. The second-order terms satisfy

iα0û1 + v̂′
1 = −iα1U

′
BAΦ,

iα0UBû1 + U ′
Bv̂1 = −iα0P0AΦ − i(α1UB − ω)U ′

BAΦ − Rs,

α2
0U

2
BAΦ = −p̄′

1,


 (3.7)

where primes denote differentiation with respect to ŷ and the forcing term

Rs = (iα0û0UD + v̂0U
′
D)AΦ = iα0(U

′
BUD − UBU ′

D)AΦ (3.8)

arises from the interaction between the instability wave and the distortion. The
solution to (3.7) is found to be

v̂1 = −iα0Φ1UB +

{
iω + iα0P0UB

∫ ŷ dŷ

U 2
B

− iα0UD

}
AΦ, (3.9)

û1 = Φ1U
′
B +

{
−α1

α0

U ′
B − P0

{
U ′

B

∫ ŷ dŷ

U 2
B

+
1

UB

}
+ U ′

D

}
AΦ, (3.10)

p̂1 = P̃1 − α2
0AΦ

∫ ŷ

0

U 2
B dŷ, (3.11)

where Φ1 and P̃1 are unknown functions of Z that represent the complemen-
tary solution to the system (3.7). The inner limits (i.e. ŷ → 0) of (3.9) and (3.10)
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are given by

v̂1 → i

(
ω − α0

λ
P0

)
AΦ − {iα0Φ1λ + iα0(λD − λJ0P0)AΦ}ŷ, (3.12)

û1 → Φ1λ +

(
−α1

α0

λ + λD − λJ0P0

)
AΦ, (3.13)

respectively, where λ ≡ 0.33206 x̄−1/2 denotes the local wall shear of the Blasius flow;
and

λD(Z; x̄, t̄) ≡ U ′
D(0, Z; x̄, t̄) = (2x̄)−1/2w′

s(Z)(Ū ′(0; x̄, t̄) e−īt +c.c.) (3.14)

represents the instantaneous wall-shear perturbation due to the Klebanoff fluctuation.
The constant J0 is defined by

J0 = −
∫ a

0

(
1

U 2
B

− 1

λ2ŷ2

)
dŷ +

1

λ2a2
,

where a is an arbitrary constant.
In the upper-deck region corresponding to ȳ ≡ σ̂ ŷ = O(1), it is adequate to consider

the solution for the perturbation in pressure and vertical velocity. These expand as

p = εσ̂
{
A(X)Φ(Z)p̄0 + σ̂ p̄1 + σ̂ 2p̄2 + σ̂ 3p̄3 + . . .

}
eiζ + c.c.,

v = εσ̂{A(X)Φ(Z)v̄0 + σ̂ v̄1 + σ̂ 2v̄2 + σ̂ 3v̄3 + . . .} eiζ + c.c.

}
(3.15)

The leading-order pressure perturbation p̄0 and the first-order correction p̄1 are
governed by

p̄0,ȳȳ − α2
0p̄0 = 0, p̄1,ȳȳ − α2

0p̄1 = (2α0α1Φ − ΦZZ)Ap̄0,

which yield the solutions

p̄0 = P0 e−α0ȳ , p̄1 = P̄1(X, Z) e−α0ȳ +A

(
−α1Φ +

1

2α0

ΦZZ

)
P0ȳ e−α0ȳ . (3.16)

The corresponding solution for the vertical velocity fluctuation can be easily derived
from the vertical momentum equation,

iα0v̄0 = −p̄′
0, iα0v̄1 + i(α1 − ω)AΦv̄0 = −p̄′

1,

which implies the inner behaviour

v̄0 → −iP0, v̄1 → −iP̄1 + A

(
−i

ω

α0

Φ +
i

2α2
0

ΦZZ

)
P0 as ȳ → 0. (3.17)

By matching the upper-deck solutions for pressure and vertical velocity with the outer
expansions of the main-deck solutions ((3.9) and (3.11)), we obtain

P̄1 = P̃1 − α2
0I2AΦ, (3.18)

−iP̄1 +

(
−i

ω

α0

AΦ +
i

2α2
0

ΦZZ

)
P0 = −iα0AΦ1 + (iω + iα0J∞P0)AΦ, (3.19)

where

I2 =

∫ ∞

0

U 2
B dŷ, J∞ =

∫ ∞

a

(
1

U 2
B

− 1

)
dŷ.
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The main-deck expansions (3.2)–(3.5) become non-uniform as ŷ → 0 and one must,
therefore, consider the Tollmien layer defined by

Y = ŷ/σ̂ = O(1),

where the base flow can be approximated by the McLaurin expansion of (3.1),

σ̂ (λ + σ̂λD)Y + σ̂ 4

(
− λ2

48
Y 4 + U ′′′

D (0, Z; x̄, t̄)Y 3

)
+ . . . . (3.20)

Note that the velocity of the Blasius flow is changed only slightly by the distortion,
but its curvature is completely altered.

The solution for the instability wave expands as

u = ε(A(X)Φ(Z)Ũ0 + σ̂ Ũ1 + σ̂ 2Ũ2 + σ̂ 3Ũ3 + . . .) eiζ + c.c.,

v = εσ̂ 2(A(X)Φ(Z)Ṽ0 + σ̂ Ṽ1 + σ̂ 2Ṽ2 + σ̂ 3Ṽ3 + . . .) eiζ + c.c.,

p = εσ̂ (A(X)Φ(Z)P̃0 + σ̂ P̃1 + σ̂ 2P̃2 + σ̂ 3P̃3 + . . .) eiζ + c.c.


 (3.21)

The leading-order solution is

Ũ0 = λ, Ṽ0 = −iα0λY,

and matching with the main-deck solution gives P0 = α0, as well as the leading-order
dispersion relation

α0 = (λω)1/2. (3.22)

The second-order terms in the Tollmien layer are governed by

iα0Ũ1 + Ṽ ′
1 = −iα1λAΦ,

i(α0λY − ω)Ũ1 + λṼ1 = −iα0P̃1 − iα1P0AΦ − iα1λ
2AΦY.

The matching requirement with the small-y asymptote of the main-deck solution
(3.12)–(3.13) suggests that Ũ1 and Ṽ1 must have the solution

Ũ1 = Φ1λ + (−α1/α0)λ + λD − λJ0P0)AΦ,

Ṽ1 = {−iα0Φ1λ + iα0(λD − λJ0P0)AΦ}Y.

}
(3.23)

The above solution satisfies the continuity equation and substituting it into the
momentum equation yields the constraint

ωλ

{
Φ1 +

(
−α1

α0

+
λD

λ
− J0P0

)
AΦ

}
= α0P̃1 + α1P0AΦ. (3.24)

It follows from relations (3.18), (3.19), (3.22) and (3.24) that the spanwise mode shape
Φ(Z) is governed by the Schrödinger equation

ΦZZ + (ψ(Z; x̄, t̄) − αs)Φ = 0, (3.25)

where we have set

ψ(Z; x̄, t̄) =
2λD(Z)α2

0

λ
= − 2α2

0

(2x̄)1/2λ
(Ū ′ e−īt +c.c.)w′

s(Z) ≡ −ψ̃(x̄, t̄)w′
s(Z), (3.26)

and

αs = 4α0

{
α1 − 1

2
α2

0(J∞ − J0 − I2) − ω
}
.

Observe that αs represents the eigenvalue of the Schrödinger operator with a potential
function (or ‘scatter’ in the general sense) corresponding to the distortion λD(Z; x, t)
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in the wall skin friction. Even though the interaction between the instability wave
and the distortion takes place in the bulk of the flow, the net effect of this interaction
is fully characterized by a local quantity λD with the detailed profile of the distortion
being largely irrelevant.

It now transpires that the reason for choosing (2.20) was to ensure a balance between
the spanwise variation of the modal shape, ΦZZ , and the wavenumber correction
αsΦ in (3.25). Without retaining ΦZZ , αs would be parametrically dependent on
the spanwise variable Z. Any higher-order terms involving first- and second-order
derivatives with respect to Z would lead to secular terms proportional to x̄ and
x̄2, respectively, which would have invalidated the entire perturbation scheme. An
eigenvalue problem analogous to (3.25) was previously obtained by Timoshin &
Smith (1997) in the context of purely inviscid singular modes induced by a stationary
distortion.

Thus far, we have not made any distinction between local and periodic distortions.
In the rest of this section and in the following section, we shall assume that λD(Z)
is localized. However, the main results can be applied to the periodic distortion after
rather minor modifications, as discussed in § 5 below. The Schrödinger operator is
well-studied and there is extensive literature on the structure of its spectrum. For
our purpose, it suffices to mention that for a localized potential, the Schrödinger
operator has a discrete spectrum (if the potential is not negative definite), and the
eigenfunctions Φ are real valued and decay exponentially as Z → ±∞. In this paper,
we normalize the eigenfunction such that∫ ∞

−∞
Φ2 dZ = 1.

There also exists a continuous spectrum such that Φ remains finite and oscillatory
at Z → ±∞. However, only the discrete spectrum will be considered in this paper,
with the exception of a few additional comments on the possible relevance of the
continuum modes.

The analysis can be carried to higher orders in a routine manner (cf. Wu, Stewart
& Cowley 1996). Consideration of the third terms in the expansion for each deck
determines α2, but the details of this calculation, as well as α2 itself, are of little
relevance here and hence are omitted. The crucial equation, which determines the
modal growth rate, is obtained by considering the fourth term in the expansion for
each deck. The final result is

− i

4α0

Φ2,ZZ =
i

4α0

{
2λD(Z)α2

0

λ
−αs

}
Φ2 −AXΦ +(γ0 +γ (Z))AΦ +iχ(Z, X), (3.27)

where the function Φ2(X, Z) represents the complementary part of the solution for
Ũ2 and Ṽ2, analogous to Φ1 in (3.23). The constant γ0 is defined by

γ0 = −πc4
0

4λ
+

λ2

2R1/4σ̂ 5(2α0c0)1/2
,

while γ (Z; x̄, t̄) corresponds to

γ (Z; x̄, t̄) = −πc3
0

λ2
U ′′′

D (0, Z; x̄, t)(2x̄)−3/2{Ū ′′′(0; x̄) e−īt + c.c.}w′
s(Z) ≡ −γ̃ (x̄, t̄)w′

s(Z).

(3.28)

The function χ is real-valued and therefore does not affect the leading-order growth
rate.
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Equation (3.27) is an inhomogeneous Schrödinger equation. The standard procedure
of imposing the solvability condition yields

AX = (γ0 + κd)A,

where

κd =

∫ ∞

−∞
γ (Z)Φ2 dZ. (3.29)

The total growth rate therefore corresponds to (γ0 + κd), with κd being the ‘excess
growth rate’ induced by the distortion. When σ̂ � O(R−1/20), the excess growth rate
becomes much larger than the second term in γ0, which corresponds to the viscous
contribution to the growth rate (Goldstein & Durbin 1986). In other words, the
instability modes of interest now become predominantly inviscid, with a growth rate
given by

κ = −πc4
0

4λ
+

∫ ∞

−∞
γ (Z)Φ2 dZ. (3.30)

In this sense, the nature of the instability has been fundamentally altered by the
distortion at this stage. As the distortion amplitude is increased further, the inviscid
growth rate continues to increase and for σ̂ � O(R−1/32) it exceeds the growth rate
of the longer-wavelength lower-branch modes (which are described by the triple-deck
structure and correspond to the most unstable modes of the unperturbed flow). It
should be noted that though the lower-branch T–S modes have a larger growth rate,
they evolve through a relatively small streamwise region (Goldstein & Durbin 1986)
so that the contribution of the lower-branch regime to the overall integral growth is
asymptotically smaller than that from the upper-branch regime (Cowley & Wu 1994).
It may therefore be argued that transition would be primarily caused by inviscid
instability provided that σ̂ � O(R−1/20).

In summary, we have seen that the asymptotic regime studied above describes a
continuous transition as the distortion amplitude is varied, from a modified form
of the short-wavelength viscous modes in an unperturbed Blasius flow, to primarily
inviscid modes that eventually dominate the overall instability of the perturbed flow.
Because the structure of these modes can be localized in the spanwise direction and,
in general, is completely dictated by the shape of the Klebanoff distortion, these
modes may be referred to as ‘localized Rayleigh modes’.

It may be seen from (3.25) and (3.30) that the spanwise shape and the growth rate
of the instability mode are controlled, respectively, by the wall shear U ′

D(0, Z; x̄, t̄)
and the torsion U ′′′

D (0, Z; x̄, t̄) of the distortion in the streamwise velocity profile. For
a time-harmonic gust, the latter is given by

U ′′′
D (0, Z; x̄, t) = (2x̄)−3/2{Ū ′′′(0, Z; x̄) e−īt + c.c.}w′

s(Z), (3.31)

which, in view of (2.16), is related to the wall-shear distortion U ′
D(0, Z; x̄, t̄) via

U ′′′
D (0, Z; x̄, t̄) = U ′

D

(
0, Z; x̄, t̄ + 1

2
π
)
.

However, as pointed out before, the original equations (3.25) and (3.29) governing
the instability modes are valid for any arbitrary form of time dependence for the
free-stream gust as long as the asymptotic scalings outlined in § 2.2 are satisfied.

Watmuff (1998) observed that when the amplitude of the free-stream disturbance
was reduced, transition occurred earlier. This is indeed an anomalous behaviour if
the level of the free-stream disturbance is regarded as the relevant control parameter.
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Figure 2. The shape of the distortion for d = 2, 4, 6.

However, Watmuff also pointed out that the decrease in distortion amplitude was
accompanied by the location of its maximum moving closer to the wall; so it is quite
possible that the wall-shear perturbation U ′

D(0, Z; x̄, t̄) increased in magnitude during
that process. If that was true, then the seemingly anomalous observation would be
completely ‘normal’ according to the present theory. Unfortunately, the wall-shear
perturbation was not measured in Watmuff’s experiment and is cumbersome to
measure, in general. Therefore, the above conjecture cannot be easily verified.

The spectrum of the Schrödinger operator is well-understood; but, in order to aid
our subsequent discussions, we first present solutions for a Klebanoff distortion with
the spanwise distribution

B(Z) =
d3Z

Z2 + d2
, (3.32)

where d is a constant. A localized distribution of this type is believed to be
appropriate for Klebanoff distortions with a finite correlation distance in Z, but
periodic distributions (corresponding to large coherence in Z) can also be easily
analysed as discussed in § 5.1 below. Substituting for B(Z) into (2.8) and evaluating
the principal-value integral, we find that

−w′
s(Z) =

B0(1 − 3Z2/d2)

(Z2/d2 + 1)3
≡ B0S(Z), (3.33)

where we have set B0 = 2πv̂∞. The shape function S(Z) is depicted in figure 2 for
several values of d . The requirement that the spanwise velocity of the distortion
vanishes at ±∞ dictates that S(Z) must change its sign in the spanwise direction. All
of the calculations presented below pertain to the (arbitrary) choice of d = 4.

Just to illustrate the general behaviour of the spectrum, we first set ψ̃ = 1 in (3.26)
and plot the eigenvalues αs for a range of B0 (figure 3). The variation of B0 also
emulates various instances during a single period of the time-harmonic Klebanoff
fluctuation. Specifically, during the modulation phase in which the distortion is
characterized by a low-speed streak, the corresponding B0 is negative. Symmetric
(varicose) modes can be found for both positive and negative B0, except in a gap
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Figure 3. Eigenvalues αs vs. B0: —, varicose modes; - - -, sinuous modes.
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comparison, the dashed line represents the eigenfunction of the varicose mode for d = 4
and B0 = 1.

0 < B0 < 0.16 =Bc. Unlike the Schrödinger operator with a purely imaginary potential
(i.e. the case analysed in Part 1), the standard Schrödinger equation (3.25) also admits
antisymmetric (i.e. sinuous) modes in addition to the varicose ones. These modes
appear only for negative B0 (or, equivalently, in a small window that does not exceed
one half of the modulation cycle in terms of duration). For B0 < 0, there are also
higher unstable modes, both symmetric and antisymmetric, which are distinguished
by the number of zeros in the corresponding eigenfunctions, as displayed in figures
4(a) and 4(b). These higher modes are generally less unstable than the first ones
and, accordingly, will not be discussed here any further. While the symmetric modes
for B0 > Bc concentrate near the centreline (see the dashed line in figure 4b), the
modes for B0 < 0 have peaks outside the main region of the mean-flow distortion.
Interestingly, the eigenvalue αs and the eigenfunctions Φ(Z) for the varicose and
sinuous modes for B0 < 0 are remarkably similar to each other (except in the
immediate vicinity of Z = 0) in this particular case, as seen from figures 3 and 4.
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To assess the relative importance of the sinuous and the varicose modes, we now
examine the ‘unit growth rate’, which is defined as

κ0 = −
∫ ∞

−∞
S(Z)Φ2 dZ

and, therefore, represents the excess growth rate (3.29) normalized by the amplitude
of the distortion. As is shown in figure 5, the first sinuous modes exhibit a slightly
higher unit growth rate than the varicose modes, except as B0 → 0 when the growth
rate κ0 decreases sharply.

Equations (3.25), (3.26) and (3.28) are used in conjunction with (3.30) to compute
the inviscid growth rate due to the time-varying Klebanoff distortion. The growth rates
of both the sinuous and varicose modes at three separate instants of time are shown
in figure 6 for the case of x̄ = 2.0 and B0 = 1.4. Observe that the sinuous modes have
considerably larger growth rates than the varicose modes. For this reason, we shall
focus on the sinuous modes henceforth. Indeed, even in the experiments of Matsubara
& Alfredsson (2001), the sinuous modes were noted to occur more frequently.

As described earlier in the context of figure 3, sinuous modes exist only when ψ̃(x̄, t̄)
is negative, i.e. at those instants during the modulation cycle when the perturbed flow
is characterized by a significant low-speed streak. This finding is consistent with
many of the experimental observations noted in the Introduction. Furthermore, the
instability occurs only in that part of cycle when γ̃ (x̄, t̄) is also negative. On the
other hand, γ and ψ tend to 0 as both x̄ → 0 and x̄ → ∞; the former is implied
by (2.15), while the latter is apparent from figure 1. Thus, γ and ψ have appreciable
magnitudes only over a restricted window in the streamwise direction. The instability
modes under consideration are, therefore, expected to be localized in space as well as
in time.

The local and intermittent nature of the instability can be further illustrated by
plotting the growth-rate contours in the (ω, x̄)-plane at various instants of time, as
shown in figure 7(a–d) for the case of B0 = 1.4. At t̄ = −1.8, a small ‘bubble’ of
instability is observed within the (ω, x̄)-plane, indicating the instigation of the
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the local phase of the wall torsion Ū ′′′(0, x̄).

instability to be at a slightly earlier time. As time increases, the bubble grows in
both spatial and spectral extent, reaching its maximum at t̄ ≈ −0.82, after which
the bubble shrinks and finally disappears, before re-emerging during the next cycle
of the Klebanoff fluctuation. Of course, given the disparity between the temporal
scales of the Klebanoff fluctuation and the instability waves the latter could amplify
substantially within a single period of modulation and, therefore, reach sufficiently
high amplitudes to induce a local breakdown. For the periodically modulated
Klebanoff distortion, the instability occurs during a fixed phase of the cycle, but, in
reality, the modulation is stochastic so that this local instability takes place randomly
as has been observed in the experiments of Kendall (1985).

It is possible to make certain deductions about the spatio-temporal behaviour
of the instability from figure 7(a–d). The localized structure of the instability wave
in both x and Z suggests that, in practice, the instability collectively would be
manifested as patches of oscillations. Since unlike usual T–S wavepackets, a patch of
relatively high-frequency disturbances cannot be sustained in an undistorted region;
they must therefore concentrate in the region where the distorted flow is unstable. The
apparent downstream migration of the unstable region therefore implies convection
of oscillation patches. The precise shape of the patches and their convection velocity,
however, could only be determined after considering the complex history of all
unstable disturbances in a distorted flow. These are left for further investigation.

It is expected that the unstable modes might amplify sufficiently over a single cycle
of modulation to unleash a chain of nonlinear events, which we now describe.

4. Nonlinear instability
The linear stability analysis in the previous section was based on the assumption

that the amplitude ε of the instability waves is sufficiently small. However, as the
waves are amplified and attain a certain threshold range of amplitudes, the nonlinear
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Figure 7. Contours of growth rates of the local instability induced by a Klebanoff mode
(B0 = 1.4) at the instants (a) t̄ = −1.8, (b) −1.25, (c) −0.82, (d) −0.44.

effects also become significant. In this section, we will show that the instability waves
evolve through two distinct weakly nonlinear stages before finally entering the
strongly nonlinear regime of development. To a great extent, the details of this
nonlinear analysis are similar to the previous analyses of non-equilibrium critical
layers; therefore, many of the details related to this analysis are omitted.

4.1. Nonlinear stage I

The first nonlinear stage is attained when

ε = O(σ̂ 19/2) ∼
(

ΛRΛ

l∗

)−19/6

. (4.1)

At this stage, the fluctuations associated with the instability wave still expand
according to (3.2)–(3.5), as in the linear case. Moreover, the first three terms in
the expansions are unaffected by nonlinearity so that the shape of the spanwise
eigenfunction Φ(Z) continues to be governed by (3.25). It is now well-established that
the dominant nonlinear interaction occurs within the critical layer and the effect of
this cubic nonlinearity is to produce a velocity jump N across this layer (Goldstein
1994; Cowley & Wu 1994). The disturbance amplitude in (4.1) was chosen so that
this jump influences the overall development (i.e. growth) of the instability mode at
the same order as the linear dynamics.

The form of the nonlinear term depends on viscous effects. As in Part 1, we assume
that

R−1/2 = rσ̂ 13,

where the Haberman (1972) parameter r (r = O(1)) characterizes the relative influence
of viscosity with respect to nonlinearity within the critical layer.
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The jump N is given by the same expression as (5.3) in Part 1, provided that
A(X) in that equation is replaced by the combined mode shape A(X)Φ(Z). Of course,
the Z-dependent factors can now be brought outside of the integral sign. Again,
matching the solution from each deck to the respective solutions from the adjacent
regions yields (3.27), but with the nonlinear velocity jump N added to the right-hand
side. Applying the solvability condition to this inhomogeneous equation, we obtain
the nonlinear amplitude evolution equation

AX = κA − iΓ

∫ ∞

0

∫ ∞

0

ξ 2(2ξ + η)K(ξ, η|s)A(X − ξ )A(X − ξ − η)A∗(X − 2ξ − η) dξ dη,

(4.2)
where

Γ = 2πλ3α5
0c

4

∫ ∞

−∞
(ΦΦZ)2 dZ, K(ξ, η|s) = exp −s(2ξ 3 + 3ξ 2η), s = 1

3
α2

0λ
2r. (4.3)

The appropriate initial condition for (4.2) follows from matching the upstream
behaviour of the nonlinear solution with the linear stage, namely

A → eκX as x → −∞. (4.4)

Numerical solutions presented below demonstrate that, for relatively weak viscosity
(i.e. r � 1), A(X) develops a singularity at a finite location Xs , and that the structure
of this singularity is the same as that proposed earlier by Goldstein & Choi (1989):

A(X) ∼ a0

(Xs − X)3+iq
as X → Xs, (4.5)

where q is a real number. The above singularity, however, does not occur when the
viscous parameter s exceeds a critical value.

Equation (4.2) is formally derived by assuming that r = O(1). However, the
permissible range of r is in fact quite large,

R−1
Λ � r � R

6/23
Λ ,

as may be deduced from (2.17), (2.21) and (2.23). Thus, r (or, equivalently, s) can be
either a small or a large parameter without invalidating (4.2). The simplified form of
this evolution equation in the very viscous limit s → ∞ can be derived by rescaling
the amplitude function according to

A = s7/8Â(X)
(
exp is1/4Θ

)
. (4.6)

Inserting this into the nonlinear term in (4.2), and performing integration by parts,
we obtain

N = (6s)−1

∫ ∞

0

∫ ∞

0

K(ξ, η){1 − s1/4ξ [Θ ′(X − ξ ) + Θ ′(X − ξ − η) − 2Θ ′(X − 2ξ − η)]}

× exp
{
is1/4[Θ(X − ξ ) + Θ(X − ξ − η) + Θ(X − 2ξ − η)]

}
× Â(X − ξ )Â(X − ξ − η)Â∗(X − 2ξ − η) dξ dη + . . . , (4.7)

where we have ignored the terms which do not affect the first two orders of the
asymptote for N . As in Wu et al. (1996), we now introduce the substitution ξ → s−1/2ξ ,
and take the limit s → ∞ to obtain a two-term asymptotic approximation for N .
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Inserting this, along with (4.6), into (4.2), we find that

Θ ′ =
(3π)1/2

72
Γ

∫ ∞

0

η−1/2|Â(X − η)|2 dη,

Â′ = κÂ +
Γ

36
Â

∫ ∞

0

η−1[Θ ′(X) − Θ ′(X − η)]|Â(X − η)|2 dη.




(4.8)

The first of these equations indicates that nonlinearity induces a wavelength shortening
or ‘dilation’, which in turn influences the modulus of the disturbance amplitude via
the coupling between the phase and the amplitude equations. The energy growth
is now governed by an equation with a quintic nonlinearity, as may be verified by
substituting the first equation into the second. An analogous finding was noted earlier
by Wu, Leib & Goldstein (1997) in the context of nonlinear interaction between pairs
of T–S waves.

4.2. Nonlinear stage II

The structure (4.5) of the singularity during stage I of the nonlinear evolution shows
that

AX/A ∼ (Xs − X)−1 as X → Xs,

which suggests that the instability mode must now evolve over a faster scale in the
streamwise direction. In particular, a distinct asymptotic regime is reached when
Xs − X = O(σ̂ 2), because the amplitude growth rate becomes comparable with the
O(σ̂ ) wavelength correction caused by the Klebanoff distortion. The scaled streamwise
coordinate governing this second stage of nonlinear evolution is defined as

X̃ = (X − Xs)/σ̂
2. (4.9)

The disturbance amplitude εA(X) has increased to O(ε̃), where

ε̃ = εσ̂ −6 = σ̂ 7/2. (4.10)

In this regime, the instability-wave perturbations in the main part of the boundary
layer expand according to

u = ε̃{Ã(X̃, Z)ū0 eiζ +σ̂ u1 + . . .} + c.c.,

with similar expansions for v, w and p. Observe that, unlike in the preceding stages of
evolution, the growth of the unstable fluctuations is non-uniform across the relevant
range of spanwise locations; consequently, the amplitude function Ã depends on both
X̃ and Z.

Matching the solutions in the various decks at the second order of approximation
leads to the amplitude equation for Ã(X̃, Z):

ÃX̃ − i

4α0

ÃZZ =
i

4α0

(ψ(Z; x̄, t̄) − αs)Ã + iΓ̃ Ñ (X̃, Z), (4.11)

where Γ̃ = πλ3α5
0c

4, and the nonlinear term,

Ñ =

∫ ∞

0

∫ ∞

0

{
ξ 3Ã(X − ξ )Ã(X − ξ − η)Ã∗

ZZ(X − 2ξ − η)

+ ξ 2ηÃ(X − ξ )[Ã(X − ξ − η)Ã∗
Z(X − 2ξ − η)]Z

+ ξ 3[Ã(X − ξ )Ã(X − ξ − η)Ã∗
Z(X − 2ξ − η)]Z

}
dξ dη, (4.12)

again represents the effect of interactions within the critical layer. Because of the
shorter streamwise length scale during the second nonlinear stage, the width of the
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Figure 8. Nonlinear evolution of the most unstable (sinuous) mode in figure 7(b) (B0 = 1.4,
x̂ = 1.2, ω = 0.65) for viscosity parameter s = 0, 1.0, 2.0 and 15.0. The dashed line represents
the local singular solution (4.5).

critical layer has increased from an O(σ̂ 4) value (during the first nonlinear stage) to
O(σ̂ 2). As a result of the thicker critical-layer region, viscous effects no longer play
any role in determining the disturbance evolution at the above order.

Equation (4.11) reflects the balance between spanwise scattering by the Klebanoff
distortion and the nonlinear effects, while the linear growth has become a secondary
effect during stage II. A distinguishing feature of this stage is that the spanwise
distribution of the instability wave is altered by the nonlinear effects, in contrast to
stage I wherein the spanwise modal shape was independent of the modal amplitude.

The appropriate initial condition for (4.11) follows from the requirement of
matching with the singular solution from the upstream region. Thus,

Ã → a0(−X̃)−(3+iq){Φ(Z) + (−X̃)−1Φ1(Z) + . . .} eiαsX̃ as X̃ → −∞ . (4.13)

The dominant term on the right-hand side of (4.13) is easily derived by rewriting (4.5)
in terms of X̃. The governing equation for the second-order correction term Φ1 can
be obtained by inserting (4.13) into (4.11) and equating the terms at O((−X̃)−4). To
obtain a unique solution for Φ1 from this equation, the orthogonality condition,∫ ∞

−∞
ΦΦ1 dZ = 0,

is imposed. Note that the amplitude evolution equation (4.11) for stage II could have
been derived without considering the solution from stage I. However, the latter is still
essential to derive the initial condition (4.13).

4.3. Numerical results for nonlinear evolution

To illustrate the features of amplitude evolution during the nonlinear stage I, we plot
the magnitude of A as a function of the streamwise coordinate X (figure 8). The
parameter x̄, which indicates the streamwise location on the longer streamwise scale,
is chosen (somewhat arbitrarily) to be 1.2; similarly, the distortion amplitude is
chosen to be B0 = 1.4 and the frequency of the most unstable, i.e. sinuous, mode to be
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Figure 9. Nonlinear evolution in stage II: E vs. X̃.

ω = 0.65. For the purpose of plotting the results, we have renormalized the amplitude
function A(X) such that the coefficient Γ = 1.

As mentioned earlier, the solution develops a singularity of the form (4.5) at
sufficiently small values of the viscosity parameter s. Figure 8 shows, however, that
the amplification is not monotonic; rather it exhibits transient decay or oscillations
before the eventual blowup at a finite distance downstream. It is interesting to note
that increasing the viscous effect appears to produce stronger oscillations upstream
of the singularity. The amplitude curve for s = 1 displays multiple spikes even on
the logarithmic scale. These spikes are adequately resolved during the numerical
integration process by using a fine step size (�X̃ = 1/400). At larger values of the
viscosity parameter s (namely at s = 2 and s = 15), nonlinearity has a stabilizing
effect on the disturbance evolution and the solution either decays in a non-monotonic
fashion (as at s = 2 in figure 8) or amplifies slowly towards the end of the integration
domain (s = 15).

As noted earlier, the stage I formulation becomes invalid when approaching the
singularity and one needs to solve (4.11) to predict the subsequent evolution of the
instability mode during stage II of nonlinear evolution. In order to ensure a smooth
match with the upstream solution, however, it is necessary to pick a large enough
value of −X̃ for imposing the constraint (4.13). To this end, we perform a trial
integration through the far-upstream region (typically starting at X̃ = −250) so as to
identify the region over which the one- and two-term approximations from (4.13) may
be considered as being sufficiently accurate. A relatively coarse grid (�X̃ = 0.5) is
typically adequate for this purpose. Typically, we found that a two-term approximation
is accurate up to X̃ ≈ −120. The solution downstream from this location is obtained
by marching (4.11) with a smaller step size. Because the amplitude function now
depends on both streamwise and spanwise coordinates, we introduce the norm

E(X̃) =

{ ∫ ∞

−∞
|A(Z, X̃)|2 dZ

}1/2

to measure the disturbance amplitude at a given streamwise location. Figure 9
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Figure 10. Spanwise distribution of |A| at different values of X̃.

illustrates the streamwise development of E(X̃) through the nonlinear stage II. Observe
that the simultaneous spatio-temporal modulation during nonlinear stage II has a
strong destabilizing effect, which causes an explosive amplification of the disturbance
to lead to yet another singularity at a finite distance X̃s on the shorter streamwise
scale involved. The spanwise distribution of A at three typical streamwise stations is
shown in figure 10. As illustrated therein, the nonlinear deformation first leads to a
shift in the peak location from Z ≈ 12.0 to Z ≈ 6.5, and then to a steepening of
the mode shape near the peak at Zs ≈ 6.5. Thus, nonlinearity inhibits any lateral
spreading and, apparently, leads to a singularity of self-focusing type.

Equation (4.11) is similar to the modulation equation in Wu (1993) with the main
difference being the additional (linear) term proportional to ψÃ. When focusing
occurs, this term becomes secondary, and the main balance is between the left-hand-
side terms and the nonlinear term on the right-hand side of (4.11). Thus the structure
of the self-focusing singularity may be of the same type as that proposed in Wu
(1993), namely

Ã = (X̃s − X̃)−(5/2+ib)F (Ẑ), Ẑ = (X̃s − X̃)−1/2(Z − Zs), (4.14)

where b is a real constant and F satisfies a rather complex equation given in Wu
(1993). If the final outcome of the stage II evolution is represented by (4.14), then the
subsequent disturbance evolution must occur on the even shorter scale

X̃s − X̃ = O(σ̂ ).

The growth rate of the disturbance is now comparable with the streamwise
wavenumber and the local spanwise length scale (near Z = Zs) is also of the
same order as the streamwise wavelength. The appropriate local variables are then
given by

X̂ = (X̃ − X̃s)/σ̂ , Ẑ = σ̂ −1/2(Z − Zs).

One also finds that due to a further increase in the thickness of the non-equilibrium
critical layer in the new regime, the critical layer actually merges with the Tollmien
layer. Since the amplitude of the disturbance increases to ε̃σ̂ −5/2 = O(σ̂ ), i.e. is of the
same order as the Blasius flow in the Tollmien layer, the flow in this region becomes
strongly nonlinear. In fact, the whole flow is now described by the inviscid form of
the fully three-dimensional triple-deck system. Earlier, Wu et al. (1997) had shown
that pairs of viscous T–S waves in the Blasius boundary layer may evolve through
several weakly nonlinear regimes before ending up with the same, fully nonlinear,
inviscid triple-deck system. For the purpose of this paper, it is sufficient to point out
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that the above scenario that provides some clues to the possible nonlinear fate of the
instability modes. The detailed numerical study, which is clearly necessary to validate
the particulars of this scenario, is outside the scope of the present work.

A final noteworthy feature of the overall nonlinear development is that the
Klebanoff distortion exerts its influence only during stages I and II and that its
effect is felt only as a higher-order correction during stage III. In other words, the
Klebanoff distortion is likely to serve only as a catalyst that promotes the early
growth of the disturbance, which eventually evolves into the same canonical regime
of inviscid strongly nonlinear behaviour as that predicted for an unperturbed Blasius
flow.

We emphasize that the results of the nonlinear theory should be treated with some
caution. While the prediction that the evolution would occur over progressively shorter
length scales is broadly in agreement with experimental observations, the formation
of the final singularity is certainly non-physical. It is also possible that the strong
nonlinearity in the fully nonlinear triple-deck stage would prevent the occurrence
of the above singularity. Another effect that may alter the nonlinear behaviour is
non-parallelism of the basic state, which is suppressed when integrating the nonlinear
evolution equations. Even though this effect is small in the strict asymptotic sense, it
may be significant for the moderate Reynolds numbers encountered in practice.

5. Spanwise-periodic distortion
Having examined the case of spanwise localized Klebanoff distortions thus far,

we now briefly consider the instability characteristics in the presence of global, but
spanwise-periodic distortions. Specifically, in § 5.1, we apply Floquet theory to study
the instability modes first considered in § 3. In § 5.2, we examine the analogy, for a
non-stationary distortion, of the Goldstein–Wundrow (1995) (G–W) modes, which
are associated with a subharmonic parametric resonance. The relation between the
Floquet and the G–W modes is discussed in § 5.3.

5.1. Floquet modes

Let us now examine how the results in § § 3–4 need to be modified in the case of
a spanwise-periodic wall-shear perturbation λD(Z; x̄, t). As mentioned earlier, (3.25)
still holds in this case, but its solution according to Floquet theory takes the form

Φ = Φ̂ eiµZ, (5.1)

where µ is a real number, with µ = 0 denoting a fundamental mode and µ = 1 being
the subharmonic mode. The periodic function Φ̂ is governed by

L̂Φ̂ ≡ Φ̂ZZ + 2iµΦ̂Z − µ2Φ̂ + ψ(Z)Φ̂ = αsΦ̂, (5.2)

where ψ(Z) is related to the wall-shear fluctuation λD as defined in (3.26). The

operator L̂ is Hermitian, so that its adjoint is simply its complex conjugate, L̂∗. It
also follows that the adjoint eigensolution is correspondingly given by the complex
conjugate of Φ . In view of the Hermitian property, the second-order term in the
perturbation expansion (3.2)–(3.5) merely leads to a correction to the streamwise
wavenumber similar to that for the localized distortion. At the fourth order, again,
one finds (3.27) as obtained earlier in § 3. On writing Φ2 = Φ̂2 eiµZ , multiplying both
sides of the resultant equation, by Φ̂∗ and integrating the resulting equation over the
spanwise wavelength L, we obtain the amplitude evolution equation AX = (γ0 + κd)A
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where the excess growth rate κd is given by

κd =

∫ L

0

γ (Z)|Φ̂|2 dZ, (5.3)

provided that Φ is normalized such that
∫ L

0
|Φ|2 dZ = 1. The function γ (Z) is related

to the wall torsion of the Klebanoff distortion profile (see (3.28)).
As in Part 1, a perturbation analysis can be carried out for the limiting case of

small distortion amplitudes ψ � 1, and this leads to

αs = −1 ±
(
q2

c + 4µ2β2
)1/2

, Φ̂ =

(
π

2β

)1/2

cos βZ + O(ψ), (5.4)

with

β = π/L, qc =
β

π

∫ π/β

0

ψ(Z) cos(2βz) dZ.

Inserting Φ̂ into (5.3) to calculate the excess growth rate, one finds the total growth
rate

κr ≡ κd + γ0 =
2β

π

∫ π/β

0

γ (Z) cos2(βz) dZ − πc4
0

4λ
. (5.5)

As an example, the calculations will be carried out for the simple harmonic potential
function

ψ(Z) = B0 cos(2βZ)

where B0 denotes a measure of the distortion amplitude. Unlike the localized modes,
Floquet modes exist for both positive and negative B0, but it is sufficient just to
consider the case of B0 > 0 since

αs(−B0) = αs(B0), Φ̂(Z, −B0) = Φ̂

(
Z +

π

2β
, B0

)
. (5.6)

The small-amplitude limit (B0 → 0) for the simple harmonic potential corresponds to

αs = −1 ±
(

1
4
B0 + 4µ2β2

)1/2
, (5.7)

which implies that two separate branches of unstable eigensolutions exist. Analytic
continuation of these two branches to finite values of B0 and µ will be referred to as
branches I and II, respectively.

The relative importance of the two branches may be assessed by considering the
‘unit growth rates’, defined via

κ0 =

∫ π/β

0

cos(2βZ)|Φ|2 dZ.

The variation of κ0 with µ is shown in figure 11(a, b) for three values of the distortion
amplitude B0. At each of those amplitudes, the subharmonic mode (µ = 0) has
the largest growth rate, but the peak becomes less prominent as B0 increases. The
branch-I modes are generally more unstable than the branch-II modes. Figure 11(b)
suggests that the unit growth of the subharmonic mode along branch II is a decreasing
function of the amplitude parameter B0.

Relations (5.6) imply that the mode for a negative B0 corresponds to a π/(2β) shift
in Z of the mode for a positive B0. Since B0 changes its sign during each cycle of the
Klebanoff fluctuation, the streak oscillation associated with the instability is expected
to meander in the spanwise direction.
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Figure 11. ‘Unit growth rates’ of Floquet modes vs. µ. (a) branch-I modes; (b) Branch-II
modes. Curves correspond to B0 = 0.5, 1, 2.

It can be shown that the nonlinear amplitude equations (4.2) and (4.11), which were
originally derived for a localized distortion, are also valid for the case of a periodic
distortion, except that the integral in the definition of Γ (see 4.3)) now is over a single
wavelength in the spanwise direction.

5.2. Goldstein–Wundrow (G–W) modes

As alluded to in the Introduction, a periodic distortion may also be unstable to
the G–W modes (Goldstein & Wundrow 1995) at distances l∗ = O(k−1

1 Λ) from the
leading edge. Similarly to the local modes considered in § § 3–4, the G–W modes arise
because the curvature of the distortion is comparable with that of the Blasius profile
in a wall layer corresponding to ŷ ∼ σ̂ , such that

εDσ̂ k−1
1 ∼ σ̂ 2. (5.8)

The G–W modes also have O(σ̂ −1) streamwise wavelengths relative to the boundary-
layer thickness R−1/2l∗. Unlike the Floquet modes, however, both spanwise and
streamwise length scales of the G–W modes are comparable with the spanwise period
of the distortion. Thus

R−1/2l∗

Λ
∼ σ̂ . (5.9)

Relations (5.8)–(5.9) imply that the threshold disturbance amplitude required for the
onset of the G–W modes is given by

εD ∼
(

l∗RΛ

Λ

)−1/2

∼ (RΛ/k1)
−1/2. (5.10)

Accordingly, we write

εD = (RΛ/k1)
−1/2B0,

where B0 = O(1) denotes the scaled amplitude of the distortion. A G–W mode
consists of a pair of oblique waves, and it can be expanded in the same form as the
Floquet modes, i.e. the main-deck eigensolutions are given by (3.2)–(3.5), except that
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σ̂ 3/2 in (3.4) is replaced by σ̂ , and

σ̂ =

(
l∗

ΛRΛ

)1/2

, AΦ(Z) = eκX(eiβZ ± e−iβZ). (5.11)

The ± signs signify two separate families of instability modes. Even though modes
from these two families are trivially related to each other via a shift in Z by
π/(2β), modes from both families must be considered, in general. Since a G–W mode
involves subharmonics of the Klebanoff distortion, its amplification can be attributed
to a parametric resonance mechanism.

Similarly to the local and the Floquet modes, the Klebanoff distortion in the bulk
of the boundary layer leads to an O(σ̂ ) correction to the phase speed. However,
for the present periodic case, the above process is completely passive in the sense
that it does not affect either the growth rate or the shape of the instability mode.
The instability characteristics are solely controlled by the curvature of the distortion,
exactly as in Goldstein & Wundrow (1995). Substituting the curvature of the present
distortion into their equation (6.22), we obtain the total growth rate of a G–W mode
induced by a Klebanoff distortion:

κr =
2 cos θ

1 + cos2 θ

{
± πc3

0

λ2(2x̄)3/2
cos 2θΩc(x̄, t̄) − πc4

0

4λ
+

λ2

2R1/4σ̂ 5(2α0c0)1/2

}
, (5.12)

where θ = tan−1(β/α0), c0 = (α2
0 + β2)1/2λ, and

Ωc(x̄, t̄) = −
{

β

2π

∫ 2π/β

0

w′
s(Z) cos(2βZ) dZ

}
{Ū ′′′(0, x̄) e−īt + c.c.}. (5.13)

For the excess growth rate induced by the Klebanoff distortion to be dominant, the
disturbance amplitude must satisfy σ̂ � R−1/20. Additionally, we must have σ̂ � 1 in
order for the foregoing analysis to be valid. The above two considerations imply that
the result (5.12) is valid if the wavelength of the Klebanoff fluctuation is in the range

R
9/11
Λ � l∗

Λ
� RΛ, (5.14)

or, alternatively, if the amplitude of the free-stream disturbance lies within

R−1
Λ � εD � R

−10/11
Λ . (5.15)

The result (5.12) indicates that omission of one of the modes, for example the minus
mode, will lead to the erroneous conclusion that a distortion with positive Ωc > 0
will not be able to support (inviscid) instability waves with cos 2θ < 0. Again, for a
Klebanoff distortion, Ωc changes its sign during the modulation cycle and, therefore,
there must be a switching between the plus and minus modes during this cycle.

Calculations were performed for w′
s(Z) = B0 cos(2βZ) and selected values of β .

In figure 12, we show the inviscid growth rate (i.e. κr with the last term in (5.12)
dropped), as a function of the wavenumber α0. For small and moderate values of β ,
the peak growth rate occurs near α0 = 0.45. The peak growth rate decreases and is
eventually stabilized, as β is increased. For larger values of β , the dominant instability
modes emerge at small α values, centred at α0 ≈ 0.12.

Finally, we note that once the amplitude of the instability modes reaches the
threshold range of

ε = O(σ̂ 10) = O

((
ΛRΛ

l∗

)−5)
,
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Figure 12. Growth rates of Goldstein–Wundrow modes. The parameters B0 = 4, x̄ = 1.2
and t̄ ≈ −1.498. Curves correspond to β = 0.063, 0.125, 0.16, 0.18, 0.44.

the function A(X, Z) must be written as

A = Ã(X)(eiβZ ± e−iβZ),

where the amplitude function Ã is governed by the nonlinear equation derived
previously by Goldstein & Choi (1989) and Wu, Lee & Cowley (1993).

5.3. The relation between Floquet modes and G–W modes

The G–W modes and Floquet modes considered in § 5.1 can exist only when the
Klebanoff distortion is periodic in the spanwise direction. Let us discuss the relation
between them from two separate viewpoints. First, consider the stability properties at
a fixed location x̄ = O(1), and examine which type of modes emerges and how their
character changes as the amplitude parameter εD is gradually increased from zero.
As indicated by (2.22) and (5.10), G–W modes require a smaller threshold for the
distortion amplitude than the Floquet modes, and hence the G–W modes appear first
as εD is increased. That is, for εD specified by (5.10), the G–W modes correspond to the
only inviscid instability that the disturbed flow can support. As εD is further increased,
the streamwise wavenumber and growth rate of G–W modes (which are O(εDk−1

1 ) and
O((εDk−1

1 )4), respectively) increase as well. Because the spanwise wavenumber must
remain fixed, the G–W modes become progressively ‘two-dimensional’. To investigate
this large-amplitude limit (namely B0 � 1 or εD � (RΛ/k1)

−1/2), we introduce the
rescaled wavenumber and phase speed via

(α0, c0) = B0(α̃0, c̃0).

Inserting these into (5.12) and taking the limit B0 → ∞ reduces (5.12) to

κr = B4
0

{
± πc̃3

0

λ2(2x̄)3/2
Ωc(x̄, t̄) − πc̃4

0

4λ

}
, (5.16)

which corresponds to the small-distortion-amplitude limit of the growth rate of
Floquet modes. More precisely, the large-amplitude behaviour (5.16) remains valid

until B0 = O((k1RΛ)1/6), i.e. εD ∼ O(R−1/3
Λ k

2/3
1 ), which corresponds to the threshold

magnitude of the distortion for the Floquet modes to arise (see (2.22)). At this stage,
the enhanced streamwise growth of the instability modes is balanced by the spanwise
modulation in the main part of the boundary layer. Thus, we have shown that the
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G–W and Floquet modes exist in separate regimes of distortion amplitude, and that
the large-distortion limit of the G–W modes ‘matches’ to the small-distortion limit of
the Floquet modes.

An alternative way to view the relation between G–W and Floquet modes is to
consider the instability characteristics for a fixed distortion strength εD , and examine
how these modes emerge and evolve as the streamwise location is varied. Suppose
that εD ∼ O(R−1/3

Λ k
2/3
1 ) as specified by (2.22), so that the distorted flow supports

Floquet modes at x̄ = O(1). Given that the threshold distortion strength for G–W
modes is much smaller, one may expect them to exist in the upstream region x̄ � 1.
The link between the upstream G–W modes and Floquet modes is best revealed by
examining the small-x̄ asymptote of the Floquet modes. If one takes into account the
streamwise variation of the distortion as well as of the Blasius flow, the key balance
(2.19) can be expressed more precisely as

εDk−1
1 ŪD,YYY (0, x̄)Yc ∼ σ̂λ2Y 2

c , (5.17)

where Yc = c0/λ = α0/λ
2 is the scaled critical level. Since ŪD,YYY ∼ (x̄)−3/2U ′′′, and

Ū ′′′(0, x̄) → (−iλ0x̄
2) (as indicated by (2.15) and (2.16)), relation (5.17) shows that

Yc ∼ x̄3/2 and hence α0 ∼ x̄1/2, c0 ∼ x̄, as x̄ → 0. This suggests the rescaling

(α0, c0) =
(
x̄1/2α̃0, x̄ c̃0

)
. (5.18)

In the limit x̄ → 0, the potential ψ in (5.2) becomes vanishingly small, and so the
result (5.5) applies. Substituting (5.18) into (5.5), and using (3.26) and the fact that
Ū ′′′(0, x̄) → −iλ0x̄

2, we find

κr = x̄9/2

{
πc̃3

0

λ2
02

3/2
Ω̃c − πc̃4

0

4λ0

}
, (5.19)

where λ0 = 0.33206, and

Ω̃c ≡ −
{

β

π

∫ π/β

0

w′
s(Z) cos(2βZ) dZ

}
(−iλ0 e−īt + c.c.).

The above approximation becomes invalid when x̄ = O(k1RΛ)−1/3, at which stage
the streamwise wavenumber becomes comparable with the spanwise wavenumber so
that the modes become fully three-dimensional in character. Thus, the G–W modes
operate in the region where x̃ ≡ (k1RΛ)1/3x̄ = O(1), and their growth rates are given
by (5.12), provided x̄ is replaced by x̃, and Ū ′′′ in (5.13) by its upstream asymptote
(−ix̃2λ0). Clearly, the large-x̃ limit of this result matches to (5.19). Thus the upstream
limit of Floquet modes matches to the downstream limit of the G–W modes, i.e. the
Floquet modes represent the downstream continuation of the G–W modes.

Note that the above matching between the G–W and the Floquet modes was based
on the assumption of linear instability, at least through the region of overlap between
the two. In reality, of course, the upstream G–W modes might reach a nonlinear stage
of evolution first and, hence, bypass the evolution into Floquet modes.

6. Conclusions and discussion
In this paper, we have investigated the effect of long-wavelength Klebanoff

fluctuations on the instability of a Blasius boundary layer. By using an asymptotic
approach based on the high-Reynolds-number assumption, we derived a consistent,
albeit simplified, mathematical model, which appears to capture certain key elements
of this problem. Specifically, our analysis indicates that relatively weak Klebanoff
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fluctuations, which do not alter the velocity profile by O(1), may change the near-
wall curvature of the underlying Blasius flow by O(1). This, in turn, has the effect
of modifying and even fundamentally altering the instability characteristics of the
boundary-layer flow. Specifically, the perturbed flow can support primarily two-
dimensional instability modes that may be localized in the spanwise direction. The
spanwise distribution of these modes is controlled by the distortion via a Schrödinger
equation governing the mode shape, in which the local skin friction of the Klebanoff
distortion acts as a potential. The growth rates of these modes are determined by the
wall torsion of the perturbed flow.

When the distortion is just strong enough to produce an excess growth comparable
with viscous growth, the above-mentioned instability modes may be viewed as
modified T–S waves. However, as the strength of the distortion exceeds a threshold
range (in an asymptotic sense), the instability becomes essentially inviscid, and the
characteristic frequencies and growth rates are now much higher than those of the T–S
waves in an unmodified Blasius flow. A localized distortion (such as may be induced
when the spanwise correlation length of the free-stream disturbance is small) may
induce both sinuous and varicose modes of instability. However, the sinuous modes
are found to be more unstable, in general. Because the Klebanoff distortion modulates
the base flow in both t̄ and x̄, its effect on the instability is intermittent in time and
localized in space, i.e. it is manifested only during a certain phase of the modulation
and in a limited window along the streamwise direction. For a localized Klebanoff
distortion, for instance, the dominant sinuous modes appear only during that phase
in which the distortion is characterized by a dominant low-speed streak. A spanwise-
periodic distortion is found to support analogous but spatially quasi-periodic modes
through parametric resonance. Even though we assumed the Klebanoff distortion to
have a single frequency for the most part, the theory itself is quite general, being
equally relevant to a wider spectrum of vortical free-stream disturbances.

An interesting feature of the instability modes identified in this paper is that,
despite the low-frequency nature of the Klebanoff distortion, the unsteadiness of
the distortion plays a crucial role in this model. (Leib et al. 1999 had shown earlier
that it is also important to account for this unsteadiness for correctly predicting the
Klebanoff distortion itself.) Specifically, the above instability modes would not have
been present for a small-amplitude Klebanoff distortion if it was treated as being
steady. Moreover, the intermittent nature and the convection of unstable patches are
both attributed to the unsteadiness of the distortion.

The nonlinear development of a localized sinuous instability mode was also studied.
In stage I of this evolution, the mode amplitude is governed by an integro-ordinary-
differential equation, the solution of which develops a finite-distance singularity if the
viscous effect is not too large, but decays if the viscosity parameter exceeds a critical
value. In the vicinity of the singularity, the disturbance enters the second regime, in
which its evolution takes place over a much shorter scale and is governed by integro-
partial-differential equation. While in the first stage the spanwise modal shape remains
unaffected by nonlinearity; in the second regime, it undergoes nonlinear deformation
due to the simultaneous modulation by the distortion and nonlinear effects. The
solution appears to develop yet another singularity during nonlinear stage II, which
completes the metamorphosis of the initially linear instability into fully nonlinear
inviscid disturbances that are generic to the strongly nonlinear phase of disturbance
evolution. It appears reasonable to suggest that the temporarily intermittent and
spatially localized instability and its subsequent nonlinear development lead to patches
of streak oscillations.
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The qualitative predictions of our theory are consistent with laboratory
observations. Our results indicate that the streaks can become unstable even without
appreciable changes in the Blasius profile. This is precisely what Matsubara et al.
(2000) concluded on the basis of their experimental studies. (See, also, Matsubara
& Alfredsson 2001.) The predicted patches of oscillations have been observed in
their experiments. The elevated growth of instability wavepackets in the presence of
Klebanoff distortion has also been observed in the experiments by Kendall (1991).

The seemingly puzzling and conflicting experimental observations can be reconciled
to some degree when reinterpreted in the light of our theoretical results. As mentioned
in § 1, the wavepackets develop out of the background disturbance and amplify
downstream. Kendall (1990) associated these with T–S waves. We believe that they
are likely to be packets of the local T–S waves identified in this paper rather than
the usual T–S waves in an unmodified Blasius flow. These local T–S waves exhibit
virtually all of the unusual characteristics observed by Kendall: the onset threshold,
the excess growth, and the range of higher frequencies. Since their growth rates
depend on the magnitude of the Klebanoff fluctuation, it is to be expected that their
amplitude at a particular observation point should have a nonlinear relation to the
magnitude of the Klebanoff motion. Since the spanwise extent of these local T–S
modes is determined by the Klebanoff distortion, it is not surprising that their lateral
spreading rate is much smaller than that of a usual T–S wavepacket. What remains
unknown is the receptivity mechanism for the packets of these local T–S waves.

The extreme sensitivity of the boundary-layer response to harmonic point excitation
(Watmuff 1997, 1998) could also be explained in the light of the present work. In the
presence of Klebanoff fluctuations, a point excitation definitely generates local T–S
modes as well. Therefore, the general response cannot be represented as a summation
of the conventional T–S waves only, as was assumed in the calculation. This may
be the reason why a meaningful comparison was impossible unless the Klebanoff
fluctuation is substantially reduced.

The effect of Klebanoff distortions on a planar T–S wave appears to be rather
controversial (cf. Boiko et al. 1994; Watmuff 2000). In this work, we did not explore
this phenomenon in detail. However, one might expect that the continuous spectrum of
(3.25) might be involved in explaining the observed deformation (i.e. scattering) of the
wave front by the Klebanoff fluctuation. This could be a topic for future investigation.
It might also be useful to examine the connection between the instability modes
examined herein and pure T–S waves, i.e. whether (and to what degree) the above
modes actually emerge from existing T–S waves at appropriate locations (and/or
instants) during the modulation cycle and eventually degenerate into them at the
end of the transient window of instability (if they cannot reach nonlinear amplitudes
by then). Such issues can be exceedingly subtle, as demonstrated by P. Hall (2001,
personal communication) for the case of a (spatially homogeneous) unsteady Stokes
layer.

Jacobs & Durbin (2001), based on their direct numerical simulations of bypass
transition, concluded that the streaks close to the wall are stable. Only when the streaks
lift up to the edge of the boundary layer to form a ‘backward jet’ do they break down
into turbulent spots. Our results seem to be in conflict with this finding. There could
be a number of reasons for the disagreement. It might be that the present instability
is too weak and that it is masked by other more vigorous processes. Alternatively,
it is plausible that the instability modes identified herein were not excited in their
simulations. Finally, unlike experimental spectra which tend to be dominated by low-
frequency components (see e.g. figure 13 of Kendall 1998), the energy of the free-stream
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disturbances in their simulation is contained in a band of rather high frequencies (an
order-of-magnitude higher than typical frequencies of T–S waves) and, therefore, the
streaks are not a linear response to the low-frequency components. Rather, they
are generated nonlinearly by the interaction of higher-frequency components. The
question as to whether this is the cause of the discrepancy remains open at this point.

In the present work, the instability modes are identified by effectively freezing the
background velocity profile, and hence represent the instantaneous behaviour of the
instability. This is justified on the basis of the disparity of time scales between the low-
frequency Klebanoff distortions and the high-frequency instability modes. On the
other hand, since the distorted flow is time periodic, it may support global Floquet
modes. There arises a question as to how the instantaneous instability is related to
the global mode of Floquet type, i.e. how a given disturbance entity evolves through
multiple modulation cycles in time and/or in space. In the linear context, i.e. assuming
that the nonlinear effects do not come into play within a single modulation cycle
(in time and space) subsequent to the genesis of the instability mode, it may be
possible to pursue a multi-dimensional Floquet theory (i.e. Floquet analysis in both
x̄ and t̄) within a finite-Reynolds-number framework in order to examine how the
local/instantaneous modes are linked to the global Floquet ones. Such a line of attack
has recently been taken by P. Hall (2001, personal communication) on the analogous
problem for time-periodic (but spatially homogeneous) Stokes layer. Hall finds that
the phase speeds of certain instantaneously growing modes, if continued into their
decaying phase, have a periodic dependence on time, and thus these modes correspond
to the high-Reynolds-number version of the Floquet modes. However, all such modes
are found to be globally stable, which suggests that local modes rather than the global
modes are the cause of transition, at least in the Stokes-layer case. The issue of local
versus Floquet modes becomes more complicated for the doubly inhomogeneous basic
state examined herein. Given that the existence of global Floquet modes relies on the
periodicity of the distortion, while the Klebanoff distortion in reality is random, it
seems reasonable to speculate that the instantaneous modes examined herein would
be more relevant in practice, and that such modes could grow sufficiently within a
single ‘window’ of instability to induce strongly nonlinear behaviour.

The present work is, of course, far from being a complete or quantitatively accurate
description of the problem. Nonetheless, the simplicity of the current model, together
with the physical insights derived from it, appear to justify the assumptions made
herein. The theory, we believe, sheds useful light on a very complex process which
has so far eluded a first-principles explanation. The primary shortcoming of the
present theory corresponds to its neglect of the spanwise ellipticity of the Klebanoff
fluctuation. The theory of course does not apply when the free-stream disturbance
is sufficiently strong that the distortion becomes fully nonlinear. The more general
problem for Klebanoff distortions with an O(1) wavelength, including the effects of
nonlinearity and stochasticity, is currently under investigation. Because no analytical
techniques currently exist to deal with stochastic eigenvalue problems with O(1)
stochastic parameters, we are pursuing a Monte Carlo approach in an attempt to
quantify the expected growth rate of the instability modes for a given r.m.s. amplitude
(and wavenumber/frequency spectrum) of the free-stream disturbance.
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